

Digital Public Infrastructure for the Transformation of Indian Civil Aviation

By Murlidhar Mohol, Hon'ble Minister of State, Ministry of Civil Aviation

India's civil aviation sector stands today at an inflection point marked by unprecedented growth, rapid modernization, and a rising national ambition to position aviation as a key enabler of economic expansion. At the heart of this transformation lies the gradual but resolute expansion of Digital Public Infrastructure (DPI) across the aviation ecosystem. As with India's successes in digital payments, identity, and public-facing governance systems, aviation too is entering a phase where robust digital frameworks will redefine operating models, enhance safety and efficiency, and unlock new growth across passenger, cargo, and emerging air mobility segments.

The past decade has witnessed sustained growth in passenger traffic, an exponential rise in fleet capacity, the emergence of new airports under the UDAN scheme, and a wider geographical spread of air connectivity. This expansion, however, also brings complex operational demands—ranging from airspace optimization and aviation safety to airport capacity management and digital interfaces for passengers. The shift towards DPI-centric aviation systems has, therefore, moved from being aspirational to essential for ensuring scalability, resilience, and seamless service delivery. Against this backdrop, India has begun instituting a coordinated, whole-of-government approach to embed digital foundations within the aviation sector.

Digital Public Infrastructure, a game changer

In recent years, Government agencies and airport operators have incrementally implemented digital systems to modernize civil aviation. While many of these systems operate individually at high levels of sophistication, the larger vision is to integrate them into a unified digital ecosystem.

Airspace management today leverages a combination of advanced surveillance technologies, satellite-based navigation aids, modernized Air Traffic Management (ATM) systems, and automated decision-support tools. India's implementation of GAGAN, the satellite-based augmentation system jointly developed by ISRO and AAI, marks a foundational DPI element that not only enhances navigational accuracy but also lays the groundwork for modern airspace utilization, reduced separation minima, and fuel-efficient flight paths. Complementing this, various Air Traffic Flow Management (ATFM) systems help optimize enroute and terminal capacity by predicting demand and balancing it against available infrastructure.

At the airport level, **passenger-centric digital initiatives** have now become deeply embedded. The DigiYatra platform, built on facial recognition and secure digital identity verification, represents a milestone in aviation DPI. It enables paperless, seamless journeys while ensuring strict privacy

safeguards. Nearly all major metro airports have adopted DigiYatra, and the platform is expanding progressively to other airports. This system signals a transition towards nationwide, technology-driven passenger facilitation.

Similarly, airport operators across the country are adopting **biometric boarding, self-baggage drop systems, e-gates, automated security lanes, and AI-driven passenger flow management tools**. These interventions improve predictability of operations and reduce manual dependencies. Digital apron management, electronic flight progress systems, and e-logbooks are becoming standard practice for operational efficiency.

The **Directorate General of Civil Aviation (DGCA)** has also embarked on significant digital reforms. The e-GCA platform, which is in process, integrates licensing, training approvals, operator certification, and regulatory workflows, eliminates physical paperwork and ensures transparency and efficiency in compliance processes. The digitization of pilot licensing, aircraft registration, safety reporting, and training organization approvals will create a more accessible and auditable system for industry stakeholders. Such systems will help regulators shift focus from administrative tasks to oversight, safety audits, and capability building.

Cargo operations, a critical component of civil aviation, have also seen digital improvements. The **Air Cargo Community System (ACS)** and various customs-integrated platforms have reduced dwell time by streamlining documentation, enabling digital payments, and integrating stakeholders such as freight forwarders, customs brokers, airlines, and ground handlers. The digital transformation of cargo systems is integral to enhancing India's global competitiveness in logistics and facilitating the faster movement of goods across the supply chain.

The UAV and emerging air mobility segment

is also being strengthened through DPI. The **Digital Sky platform** had introduced a pioneering approach by enabling online registration, drone authorization, flight permissions, and compliance workflows. Now integrated with e-GCA, the framework will become the backbone of electric Vertical Take-off and Landing (eVTOL) aircraft and urban air mobility (UAM) services tracking systems, and safety compliance.

Together, these initiatives represent the early architecture of a comprehensive aviation DPI ecosystem. However, to fully unlock India's aviation potential and address future complexities, deeper integration, scalability, and advanced digital capabilities will be essential.

Prospects and Pathways for DPI-Driven Transformation

Going forward, the transformation of Indian civil aviation through DPI will require a system-wide shift toward interoperability, real-time data exchange, predictive analytics, and secure digital platforms. The next phase of growth will be shaped by operational demands, rising traffic volumes, and the need for resilience against disruptions.

A central priority will be the **modernization and integration of airspace management systems**. As India's fleet expands, with a significant number of aircraft expected to join commercial operations by 2030, airspace complexity will intensify. DPI can enable a harmonized ATM environment where surveillance systems, navigational tools, flow management platforms, and airport operations centers exchange data seamlessly. Technologies such as trajectory-based operations, digital NOTAMs, time-based separations, and AI-enabled decision support tools will help optimize sector capacity, minimize delays, and enhance safety margins. A unified Air Traffic Management single-window digital platform can consolidate data

from radar systems, ADS-B sources, GAGAN, ATFM systems, and airline operations to provide real-time situational awareness.

The **airport ecosystem of the future** will rely increasingly on DPI-driven integrated operations centers that monitor passenger flows, turnaround times, gate allocation, baggage systems, and security queues in a unified interface. Real-time dashboards driven by IoT sensors, machine learning algorithms for predicting congestion, and integrated command centers can help airports plan proactively rather than reactively. Smaller airports, particularly those developed under UDAN, can benefit from cloud-based digital systems that reduce the need for heavy investment in physical infrastructure.

Passenger experience will continue to improve as DPI deepens its role. The expansion of DigiYatra into a full-lifecycle digital passenger platform—covering booking, travel insurance, airport retail, multi-modal transport connections, and feedback systems—can create a seamless journey from home to destination. Such a unified digital interface can reduce transaction frictions, enhance airport throughput, and improve service quality across touchpoints.

Regulatory systems will evolve with enhanced data-driven oversight. Future DPI layers can integrate operational, safety, and training data into analytical engines that provide regulators with insights into risk trends, compliance patterns, and emerging safety challenges. Predictive safety management systems using big data analytics will allow DGCA to move towards proactive safety oversight, early-warning indicators, and performance-based regulation.

Digital transformation will also play a decisive role in the future of **cargo and logistics**. A fully integrated Digital Cargo Community System linking customs, airlines, freight operators, and

last-mile logistics providers can significantly reduce bottlenecks. End-to-end digital visibility of cargo flows, blockchain-based documentation, and AI-enabled load planning can bring efficiency to India's supply chain ecosystem. As India seeks to become a global transshipment hub, DPI-driven cargo reforms will be a competitive advantage.

In the domain of **emerging air mobility**, DPI will be pivotal. With increasing interest in drone deliveries, surveillance operations, and the longer-term prospects of eVTOL-based mobility, India must prepare for a digitally managed low-altitude airspace. A fully automated Unmanned Traffic Management (UTM) system integrated with conventional ATM systems will be essential. DPI will enable automated flight authorization, route de-confliction, remote ID tracking, compliance monitoring, and AI-assisted traffic coordination. A comprehensive UTM-ATM integrated digital backbone, can position India as a leader in safe, scalable new-generation air mobility systems.

A parallel area of opportunity lies in sustainable aviation. DPI-enabled platforms can help track carbon emissions, optimize flight trajectories for fuel savings, enable electronic environmental reporting, and support the transition to sustainable aviation fuels through transparent supply chain tracking systems. As India moves towards its sustainability commitments, digital systems will play a crucial enabling role.

Looking ahead, the government's vision for aviation DPI extends beyond deploying advanced digital tools. It seeks to create **foundational, interoperable layers** that standardize interfaces, ensure secure data flows, enable integration across stakeholders, and allow both government and private players to innovate on top of shared digital platforms. This approach—similar to India's digital governance models in other sectors—ensures scalability, inclusiveness, and resilience.

However, realizing this full potential will require addressing challenges. Ensuring cybersecurity across aviation infrastructure will be paramount. With rising digitalization comes greater exposure to cyber risks. Establishing robust cybersecurity frameworks, regular audits, data encryption protocols, and real-time threat detection systems will be essential to safeguard operations. Equally important will be **capacity building**, ensuring personnel across ATC, airlines, airports, regulators, and security agencies are equipped to manage new digital systems. Interoperability standards must be strengthened to avoid the emergence of siloed systems.

Finally, the successful implementation of aviation DPI will depend on effective collaboration between central ministries, regulators, airport operators, technology providers, airlines, and academia. A coordinated institutional approach will allow seamless integration and shared ownership of digital transformation goals.

Towards safer and accessible skies

India's civil aviation sector is witnessing a pivotal moment as it prepares for exponential growth over the coming decades. Digital Public Infrastructure stands at the center of this transformation, offering the foundations needed to enhance safety, modernize operations, empower passengers, and unlock new modes of air mobility. With strong policy intent, institutional collaboration, and sustained investment, India has the opportunity to build one of the world's most advanced, inclusive, and future-ready aviation ecosystems. Digital transformation is no longer a supporting function; it is the engine powering the next phase of India's civil aviation journey—ensuring that the skies remain safe, efficient, and accessible for all.

नागर विमानन मंत्रालय
MINISTRY OF CIVIL AVIATION